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tions in cortical oscillations in the alpha (7–14 Hz) and beta (15–29
Hz) range have been correlated with attention, working memory, and
stimulus detection. The mu rhythm recorded with magnetoencepha-
lography (MEG) is a prominent oscillation generated by Rolandic
cortex containing alpha and beta bands. Despite its prominence, the
neural mechanisms regulating mu are unknown. We characterized the
ongoing MEG mu rhythm from a localized source in the finger
representation of primary somatosensory (SI) cortex. Subjects showed
variation in the relative expression of mu-alpha or mu-beta, which
were nonoverlapping for roughly 50% of their respective durations on
single trials. To delineate the origins of this rhythm, a biophysically
principled computational neural model of SI was developed, with
distinct laminae, inhibitory and excitatory neurons, and feedforward
(FF, representative of lemniscal thalamic drive) and feedback (FB,
representative of higher-order cortical drive or input from nonlemnis-
cal thalamic nuclei) inputs defined by the laminar location of their
postsynaptic effects. The mu-alpha component was accurately mod-
eled by rhythmic FF input at approximately 10-Hz. The mu-beta
component was accurately modeled by the addition of approximately
10-Hz FB input that was nearly synchronous with the FF input. The
relative dominance of these two frequencies depended on the delay
between FF and FB drives, their relative input strengths, and stochas-
tic changes in these variables. The model also reproduced key features
of the impact of high prestimulus mu power on peaks in SI-evoked
activity. For stimuli presented during high mu power, the model
predicted enhancement in an initial evoked peak and decreased sub-
sequent deflections. In agreement, the MEG-evoked responses
showed an enhanced initial peak and a trend to smaller subsequent
peaks. These data provide new information on the dynamics of the mu
rhythm in humans and the model provides a novel mechanistic
interpretation of this rhythm and its functional significance.

I N T R O D U C T I O N

Two predominant rhythms are expressed in the neocortex in
the frequency range from 7 to 30 Hz: alpha (7–14 Hz) and beta
(15–29 Hz). Modulation of alpha and beta activity is correlated
with successful perception in humans and awake monkeys
(Bauer et al. 2006; Donner et al. 2007; Hanslmayr et al. 2007;

Linkenkaer-Hansen et al. 2004; Mathewson et al. 2009; Maza-
heri et al. 2009; Palva et al. 2005b; Pineda 2005; Schroeder and
Lakatos 2009a; Schubert et al. 2008; van Wijk et al. 2009;
Wilke et al. 2006; Worden et al. 2000; Zhang and Ding 2009).
Recent studies have emphasized a potential role for the active
deployment of these rhythms in the suppression of “distract-
ing” sensory input (Jensen et al. 2002; Kelly et al. 2006;
Mazaheri et al. 2009; Worden et al. 2000), presumably by
suppression of evoked responses in early sensory cortices.

The mu rhythm measured with magnetoencephalography
(MEG) over Rolandic cortex shows alpha and beta components
(Hari and Salmelin 1997; Tiihonen et al. 1989). This finding is
in contrast to the Rolandic mu rhythm measured with electro-
encephalography (EEG), in which only a dominant alpha
component is typically observed (Kuhlman 1978; Zhang and
Ding 2009). This historical distinction is likely attributable to
differences in the recording techniques and has led to mixed
usage of the term “mu” in the literature. This ambiguity in
naming is indicative of the ongoing ambiguity with respect to
the statistical characteristics and neural origins of the mu
rhythm. Despite the fact that much research has been devoted
to localizing the source of this rhythm in the brain—and to
understanding the cellular-level neural mechanisms creating
alpha and beta rhythms independently—the neural origin of the
MEG mu complex remains unknown. In the present report, we
investigated the two-component mu rhythm measured with
MEG using experimental and modeling approaches. We refer
to these components throughout as mu-alpha and mu-beta.

One prominent view of the origin of the MEG mu rhythm,
based on source localization of sensor data from human stud-
ies, is that the mu-beta component is produced by the precen-
tral motor cortex, whereas the mu-alpha component originates
from the postcentral somatosensory cortex (Hari and Salmelin
1997; Salmelin and Hari 1994; Salmelin et al. 1995). These
studies focused on localizing late event-related desynchroniza-
tion (ERD) of the rhythm after movement. More recent work,
focused on spontaneous activity and early ERD, has shown that
both components can be expressed in a single area (Brovelli
et al. 2004; Gaetz and Cheyne 2006; Kopell et al. 2000; Pinto
et al. 2003; Szurhaj et al. 2003), with intracerebral recordings
in humans suggesting a common source in primary somato-
sensory (SI) cortex (Szurhaj et al. 2003).

Studies that have investigated the cellular-level neural mech-
anisms inducing ongoing cortical alpha and beta rhythms have
focused on the origin of the two frequency bands separately. A
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large body of experimental and computational work suggests
neocortical alpha emerges from an approximately 10-Hz
thalamocortical rhythm (Andersen and Andersson 1968; Con-
treras and Steriade 1995; Hughes and Crunelli 2005; Suffczyn-
ski et al. 2001; Traub et al. 2005). Other evidence suggests that
neocortical alpha also depends on, or could emerge indepen-
dently from, intrinsic properties in large layer V pyramidal
neurons (Bollimunta et al. 2008; Jones et al. 2000; Pinto et al.
2003; Silva et al. 1991) and/or the local activity of low-
threshold spiking interneurons (Fanselow et al. 2008).

Fewer studies of the neural origins of the cortical beta
rhythm have been conducted. Slice recordings (Roopun et al.
2006; Whittington et al. 2000) and computational models
(Jensen et al. 2002; Kopell et al. 2000; Pinto et al. 2003;
Roopun et al. 2006) have shown a beta-frequency range oscil-
lation in isolated cortex that depends on the kinetics of the
M-type potassium current in excitatory neurons, combined
with GABAergic inhibition. Roopun et al. (2006) further found
that axonal gap junctions were critical to the maintenance of
pharmacologically induced 20- to 30-Hz rhythms in slices from
somatosensory cortex (referred to as a “beta 2” rhythm) and
that lower-frequency beta rhythms (13–17 Hz; “beta 1”) could
be produced by period concatenation of higher-frequency beta
(20–30 Hz) and gamma (30–50 Hz) oscillations (Kramer et al.
2008; Roopun et al. 2008). In all of these studies, the beta
rhythm is argued to emerge from the activity of localized cells
in a single cortical circuit that are spiking nearly synchronously
and that the frequency of these rhythms depends on intrinsic
membrane time constants.

Another body of research has suggested that beta activity
mediates long-range communication between cortical areas,
suggesting that intracortical projections may play a role in local
beta expression (Buschman and Miller 2007; Hanslmayr et al.
2007; Roelfsema et al. 1997; Schubert et al. 2008; von Stein
et al. 2000; Witham et al. 2007). For example, Von Stein et al.
(2000) found coherence in beta-band activity between temporal
and parietal EEG sensors during multimodel object represen-
tation in humans, and Buschman and Miller (2007) between
parietal and frontal indwelling electrodes during selective at-
tention in monkeys. In support for a role of interareal projec-
tions in the neocortex, Whitham et al. (2007) found interactions
between 20-Hz activity in somatosensory and motor areas that
did not depend on intrinsic spiking (Witham and Baker 2007)
and claimed there was oscillatory coupling across the central
sulcus. Brovelli et al. (2004) applied Granger causality analysis
to 20-Hz oscillatory activity measured intracranially from mul-
tiple cortical sites in the monkey and claimed that the beta
activity propagated from the primary somatosensory (SI) cor-
tex to primary motor and parietal cortices. Nonlemniscal tha-
lamic nuclei have also been proposed as relays for signal
transmission between neocortical areas (Sherman 2005). Such
thalamic nuclei are also ideally poised to generate oscillatory
coherence across multiple cortical areas (Llinás and Ribary
2001). As such, beta activity related to long-range communi-
cation could also arise, at least in part, from these projections.

Difficulty establishing the neural mechanisms generating the
MEG mu rhythm comes in part from the fact that the shared
temporal dynamics of the mu-alpha and mu-beta components
are not well characterized. Tiihonen et al. (1989) observed
qualitatively that the mu-alpha and mu-beta components do not
always overlap in time, suggesting they are not harmonics, but

did not quantify this assertion (Palva et al. 2005b; Tiihonen
et al. 1989). Evidence for cross-frequency coupling of these
components has also been reported (Palva et al. 2005b). Quan-
tifying the degree to which mu-alpha and mu-beta co-occur and
covary in amplitude is crucial to understanding their relative
interdependence and to constraining computational models of
their origins.

An important related topic is delineation of the mechanistic
underpinnings of the impact of ongoing mu power on evoked
sensory responses. This relation is particularly important, given
studies showing that both ongoing mu power and SI tactile-
evoked responses predict perception (Jones et al. 2007; Kulics
1982; Linkenkaer-Hansen et al. 2004; Zhang and Ding 2009).
In recent studies of mu-alpha, prestimulus power shows an
inverted U-shaped relation to tactile detection (Linkenkaer-
Hansen et al. 2004; Zhang and Ding 2009) and a similar
relationship was seen for mu-beta (Linkenkaer-Hansen et al.
2004). In studies of the relationship between time-domain
peaks in tactile-evoked responses and detection, Kulics (1982)
observed that greater evoked activity in the local field potential
(LFP) near 70 ms predicted detection of tactile input by
monkeys with electrodes implanted in SI and that differences
in later activity (105–130 ms) were correlated with reaction
time. Similarly, in humans, Jones et al. (2007) showed that
greater amplitude of components of the SI-evoked response
70–130 ms poststimulus was a key predictor of detection.
Zhang and Ding (2009) recorded greater late evoked compo-
nents (�140 ms) in sensorimotor EEG electrodes on success-
fully detected trials and Palva et al. (2005) showed greater
response 30–150 ms poststimulus for detection in sensorimo-
tor MEG sensors.

Despite the links between prestimulus mu expression or
evoked response amplitude and detection, the impact of spon-
taneous mu on peaks in the time-domain tactile-evoked re-
sponse (ER) has received limited attention. Nikouline et al.
(2000) reported that large variation in the prestimulus mu-
alpha band activity was related to “relatively stable” early parts
(�60 ms; referred to as P35 and P60) of median nerve ERs
recorded using MEG, which showed a small positive correla-
tion with greater alpha power predicting a larger early compo-
nent (Nikouline et al. 2000). Zhang and Ding (2009) reported
that for late components (�140 ms) of the tactile ER measured
with EEG, there was a complex and largely parabolic relation-
ship between mu-alpha power and evoked amplitude (Zhang
and Ding 2009). Further, although mechanisms for changes in
later (�250 ms) components of median nerve (Nikulin et al.
2007) and visual (Mazaheri and Jensen 2008) evoked re-
sponses have been associated with baseline shifts and phase
resetting of alpha activity (Hanslmayr et al. 2007; Makeig et al.
2002), to our knowledge no systematic study has been per-
formed to delineate the specific impact of MEG mu power
(containing alpha and beta components) on different aspects of
the earlier tactile responses that have been linked to perceptual
success.

To investigate these questions, we recorded whole-head
306-channel MEG data and applied an equivalent current
dipole inverse solution technique to look at activity from the
hand area of SI, a technique that has been found to consistently
localize signals discretely to the anterior bank of the postcen-
tral gyrus, area 3b (Jones et al. 2007). We studied the prestimu-
lus mu rhythm generated by this somatosensory source and its
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connection to peaks in the early (�175 ms) time-domain–
evoked responses. On single trials, we observed that during the
prestimulus time period high-power epochs of mu-alpha and
mu-beta were not simultaneous in their emergence, but did
co-occur at rates greater than chance. These findings suggest
that mu-alpha and mu-beta emerge from separable generators
within SI that share common elements. We did not explore
evoked poststimulus oscillations because our analysis of this
period was focused on the region in which our model had
predictive power in the evoked response (0–175 ms).

We then implemented a biophysically principled laminar
cortical model of SI to make specific predictions with respect
to the underlying neural mechanisms inducing the mu rhythm,
its modulations in prestimulus power, and their influence on
early peaks (�175 ms) in the time-domain tactile-evoked
response. This model was expanded from our previous SI
model that accurately reproduced the different time-domain–
evoked response components in SI measured with MEG. The
model included pyramidal neurons and interneurons in the
supra- and infragranular layers. Importantly, this model also
included thalamocortical feedforward (FF) input and inputs to
distal dendrites that could arise from intracortical feedback
(FB) or from nonlemniscal thalamic input.

Our results showed that the mutual generation of the mu-
alpha and mu-beta components of the prestimulus rhythm, as
well as the relative separation of these components in time, can
be reproduced by the SI model. The data and model indicated
these rhythms are not simple harmonics and are not regulated
by time constants of intrinsic membrane properties. The mu-
alpha component was reproduced with an approximately 10-Hz
stochastic thalamocortical FF input. Accurately capturing mu-
beta and its interactions with mu-alpha, in contrast to previous
modeling studies emphasizing local cortical circuits and intrin-
sic properties, required rhythmic supragranular input, consis-
tent with FB from higher cortical areas and/or input from
nonlemniscal thalamic sources. To accurately reproduce the
observed mu-alpha and mu-beta emergence and statistical
interdependence, this FB was simulated not as a 20-Hz signal,
but rather as a stochastic approximately 10-Hz signal. Further,
mu-beta was not achieved when the approximately 10-Hz
supragranular inputs were perfectly out of phase, as one might
expect for generation of a 20-Hz oscillation, but rather almost
perfectly aligned with the approximately 10-Hz FF input
(�10-ms mean delay).

Investigation of the influence of prestimulus mu rhythm on
the gain of the early-evoked sensory response (0–175 ms) in
the model showed that mu power had a dominant effect on the
initial peaks of the time-domain signal (�70 ms). This predic-
tion was confirmed in the MEG data. Further, the model
predicted that a key impact of high mu on peaks of the early
evoked response is enhanced recruitment of excitatory and
inhibitory interneurons and that recruitment of the interneurons
caused suppression of subsequent (70–100 ms) components.

M E T H O D S

MEG experiment

MEG data were collected from 10 neurologically healthy, right-
handed, 18- to 45-yr-old adults during performance of a tactile-
detection paradigm. The experimental protocol was approved by the
Massachusetts General Hospital Internal Review Board and each

subject gave informed consent prior to data acquisition. The stimulus
paradigm and data acquisition are described in detail in Jones et al.
(2007), which reported on tactile-evoked response components for 7
of these subjects; data from an additional 3 subjects were collected for
the present report. Here, we outline key aspects of the experimental
paradigm and current data analysis methods.

STIMULUS PARADIGM. Brief taps were delivered to the subject’s
right hand in the form of a single cycle of a 100-Hz sine wave (10-ms
duration) via a custom piezoelectric device. Subjects rested their hand
on a Delrin frame that held a piezoelectric transducer parallel to the
finger (Noliac ceramic multilayer bender plate: 32 � 7.8 � 1.88 mm).
A deflection stroke drove a 7-mm-diameter Delrin contractor through
a 1-cm circular rigid surround and into the fingertip.

The detection threshold of each subject was obtained prior to
imaging using a parameter estimation by sequential testing (PEST)
convergence procedure (Dai 1995; Leek 2001). During MEG record-
ings, for 70% of presented trials, stimulus strength was maintained at
a perceptual threshold level (50% detection) using a dynamic algo-
rithm (see Jones et al. 2007). Suprathreshold stimuli (10% of all trials;
350-�m deflection; 100% detection) and null trials (20%) were
randomly interleaved with the threshold stimuli. Trial duration was
3 s. Each subject underwent eight runs with 120 trials. Trial onset was
indicated by a 60-dB, 2-kHz auditory cue delivered to both ears for
2 s. During the auditory cue, the 10-ms finger-tap stimulus was
delivered between 500 and 1,500 ms, in 100-ms intervals, from trial
onset. The number of trials of a given latency to tap was randomly
distributed during each run. Following the cessation of the auditory
cue, subjects reported detection or nondetection of the stimulus with
button presses, using the second or third digit of the left hand,
respectively. The auditory cue ended �500 ms after the tactile
stimulus and 1,000 ms before the next trial began.

MEG DATA ACQUISITION. By use of a 306-channel MEG (Elekta-
Neuromag Vectorview), neuromagnetic responses were recorded with
306 sensors arranged in triplets of two planar gradiometers and a
magnetometer at 102 sites. In addition to MEG, the vertical and
horizontal electrooculogram (EOG) signals were recorded with elec-
trodes placed close to the left eye. Four head-position indicator (HPI)
coils were placed on the subject’s head to coregister the subject’s
anatomical magnetic resonance image (MRI) and the MEG sensors.
The data were sampled at 600 Hz with the band-pass set to 0.01–200
Hz. The responses were averaged on-line for quality control. In the
off-line analysis, the data were reaveraged using a band-pass of
0.1–200 Hz. The chosen high-pass filter corner frequency was low
enough to retain possible slow variations in the dc level of the neural
signals while eliminating low-frequency environmental noise. Inspec-
tion of the localized SI spontaneous activity (see description of source
analysis in the following text) showed that it was stable through
�10-s time windows during which there was modulation of the mu
rhythm without dc offset. Epochs with EOG peak-to-peak amplitude
exceeding 150 �V were excluded from the analysis.

MEG SOURCE ANALYSIS. Source analysis was used to locate the
primary current-dipole source to contralateral SI and to find the time
course of this source, taking into account the presence of other active
areas. This method was motivated by and described in greater detail
in Jones et al. (2007), but is also described here. The SI contribution
to the somatosensory-evoked field was isolated using the following
approach. Because we did not observe consistent activity over the
ipsilateral secondary somatosensory cortex (SII), or in other brain
areas, we modeled the data with two dipoles (contralateral SI and SII).
This fit was then optimized by use of signal-space projection (SSP)
(Tesche et al. 1995; Uusitalo and Ilmoniemi 1997). A least-squares fit
with the dipole forward solution was calculated through the use of a
spherically symmetric conductor model (Hamalainen and Sarvas
1989; Sarvas 1987). At the peak activity in the suprathreshold stim-
ulus signals from one data run (average of 12 trials; mean � 68 ms,
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SD � 8 ms), we observed an initial equivalent current dipole (ECD).
An anatomical MRI was then coregistered with the MEG, confirming
this source localized to SI in 7 of 10 subjects. We then removed the
contribution of the SI ECD using the SSP method and the residual
data fit with a second ECD (Nishitani and Hari 2000; Tesche et al.
1995; Uusitalo and Ilmoniemi 1997). In all fit data during peak
responses, the goodness-of-fit of the two-dipole model was �70%.
We then removed the effect of the second ECD from the data using
SSP and refitted the SI ECD to the residual. The ECD localizations
fitted to the suprathreshold data were used to model all responses.
Only the last 100 trials for a given response were considered for
analysis, to account for adaptation and learning effects with training.

Large baseline rhythmic activity interfered with the localization of
peak responses for 2 of the 10 subjects. In these cases, the SI source
was placed in the finger representation of area 3b within the anterior
bank of the postcentral gyrus (Moore et al. 2000; Penfield and
Rasmussen 1950; Sastre-Janer et al. 1998; Uematsu et al. 1992; White
et al. 1997; Yousry et al. 1997) and the SII dipole source was placed
in the parietal operculum. For one of the 10 subjects, anatomical MRI
data could not be obtained. In this case, SI dipole localization was
determined by field contours on the spherical head model, consistent
with the predicted position of contralateral SI. Removal of these 3
subjects from our analysis did not have a significant impact on our
results (see Fig. 3).

FREQUENCY DOMAIN ANALYSIS. Power spectral density (PSD)
analyses (Figs. 3A and 7A) were calculated for frequencies from 1 to
60 Hz using the Welch’s periodogram method as implemented in
Matlab, with overlapping 0.5-s windows.

Time–frequency representations (TFRs) or spectrograms of the data
were calculated from 1 to 40 Hz on the SI ECD time courses by
convolving the signals with a complex Morlet wavelet of the form w(t,
f0) � A exp(�t2/2�t

2) exp(2i�f0t), for each frequency of interest f0,
where �t � m/2�f0 and i is the imaginary unit. The normalization
factor was A � 1/(�t

�2�) and the constant m, defining the compro-
mise between time and frequency resolution, was 7. TFRs of power
were calculated as the squared magnitude of the complex wavelet-
transformed data. The normalization factor used is such that the sum
of the magnitude of the wavelet coefficients over all frequencies is
one, unlike that preserving the sum of squared magnitudes of the
wavelet coefficients used in, e.g., Tallon-Baudry et al. (1997). Our
normalization factor emphasizes higher frequencies with the distinct
benefit of allowing us to more clearly visualize the time course of 15-
to 29-Hz mu-beta activity (e.g., compare Fig. 3, A and C). Therefore
the low-frequency activity (�7 Hz) is much less pronounced than that
in the traditional PSD plots.

POWER SORTING ALGORITHM. When sorting trials over mu (7–29
Hz), mu-alpha (7–14 Hz), or mu-beta (15–29 Hz) power for analysis
in Figs. 5, 7, and 9B, spectrograms (described earlier) calculated for
each trial were averaged over the frequency band of interest and then
sorted from high to low power. The top and bottom 10% of the sorted
trials were excluded from further analysis.

CALCULATION OF SYMMETRY INDEX. The symmetry index of the
oscillation waveform around zero, as shown in Fig. 6, was calculated
as follows. We first applied a band-pass of the entire mu frequency
range (7–29 Hz) to the signal. We then found the local maxima
(peaks) and minima (troughs) in the filtered data and identified the
time points corresponding to each peak and trough. These time points
were used to obtain signal peak and trough values from the unfiltered
data. The symmetry index (SInd) was calculated as [abs (peak) �
abs (trough)]/[abs (peak) � abs (trough)] (Galaburda et al. 1990). A
positive symmetry index indicates greater-amplitude peaks, a negative
value indicates greater-amplitude troughs, and a zero value indicates
that an oscillation was symmetric around zero.

Computational neural model

The computational neural modeling presented is expanded from our
previous model of a laminar SI network, as described in detail in Jones
et al. (2007) and the code is available to the public on the NEURON
ModelDB website (http://senselab.med.yale.edu/modeldb/ShowModel.
asp?model�113732). Here, we describe key features of the model and
its expansion.

SI CORTICAL COLUMN MODEL. Our simulated SI cortical column
network consisted of 100 multiple-compartment excitatory pyramidal
neurons (PNs) and 35 single-compartment inhibitory interneurons
(INs) per layer (Thomson et al. 2002) in layers II/III and V, expanded
from 10 PNs and 3 PNs in each layer in our previous model (Jones
et al. 2007). Postsynaptic dendritic contact points of the local excita-
tory and inhibitory synapses are depicted in Fig. 1A (see Jones et al.
2007 for supporting literature). Connection lines are schematic rep-
resentations of axonal-to-dendritic input. Axons were not explicitly
modeled. The PNs were arranged in a two-dimensional (2D) grid as
shown in Fig. 1D. INs were interleaved evenly between every 2 PNs
(not shown in Fig. 1D). Fast and slow excitatory (�-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate [AMPA/
NMDA]) and inhibitory (�-aminobutyric acid type A/type B
[GABAA/GABAB]) synapses were simulated using an alpha function
that was “turned on” by the soma of the presynaptic cell crossing a
voltage threshold (mV � 0). The synaptic dynamics were defined by

FIG. 1. Schematic of primary somatosensory cortex (SI) computational model network architecture. A: local network synaptic connections between
multiple-compartment pyramidal neurons (PNs, green) and single-compartment inhibitory neurons (INs, red). Bold outlined dendrites were contacted.
Within-layer PN-to-PN synapses (not shown) were also present on dark green outlined dendrites. B: excitatory feedforward (FF) input connections. The
black arrow is only schematic because lemniscal thalamic input was not explicitly modeled. C: excitatory feedback (FB) input connections from presumed
higher-order cortical and/or nonspecific thalamic neurons. The FF and FB inputs were modeled as spike train generators with a predetermined temporal
profile and synaptic strength. D: schematic of expanded SI cortical column model containing a 2-dimensional grid of 100 PNs and 35 INs evenly spaced
between every 2 PNs, in the supra- (PNs shown in orange) and infragranular layers (PNs shown in green); INs not shown. Each set of synaptic weights
had a Gaussian spatial profile (Table 1).
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the following rise/decay time constants and reversal potentials, re-
spectively: AMPA 0.5/5 ms, 0 mV; NMDA 1/20 ms, 0 mV; GABAA

0.5/5 ms, �80 mV; GABAB 1/20 ms, �80 mV. The conductance of
the synaptic connections within the local network grid were defined
with a symmetric 2D Gaussian spatial profile, with a delay incorpo-
rated into the synaptic connection between two cells defined by an
inverse Gaussian (Jones 1986; Kaas and Garraghty 1991). The max-
imum synaptic conductances and Gaussian weight space constants
(WSCs, number of cells from center) are listed in Table 1 along with
the minimum synaptic delay and corresponding Gaussian delay space
constant (DSC).

SINGLE-CELL MORPHOLOGY AND PHYSIOLOGY. The morphology
and physiology of the INs in each layer were simulated with single
compartments and contained fast sodium (INa) and potassium currents
(IKdr) to create spiking activity. The PNs in layers II/III and V were
simulated with eight and nine segments, respectively, based on the
reduction by Bush and Sejnowski (1993), and used a compartment
length of 50 microns. The PNs in layer II/III produced an adapting
spike trains to injected current created by active currents in the
somatic and dendritic compartments, including a fast sodium current
(INa), a delayed rectifier potassium current (IKdr), an adapting potas-
sium current (IM), and a leak current (IL). The layer V PNs produced
bursting responses to injected current (Fig. 1B) and contained the
same currents as those of the PNs in layer II/III, with the addition of
a calcium current (ICa), a potassium-activated calcium current (IKCa),
and h- and T-currents in the somatic and dendritic compartments. See
Fig. 1B in Jones et al. (2007) for examples of spiking behavior. A
low-threshold calcium current (IT) and a hyperpolarization-activated
mixed cation current (Ih) are additions to our previous model. The IT

channel density was constant in all segments at 2 � 10�4 S/cm2. The
Ih channel density was increased exponentially from the soma (where
it was set at 1 � 10�6 S/cm2) to apical dendrite, with a space constant
of 3 � 10�3. This matches Ih densities observed in rat somatosensory
cortex (Kole et al. 2006). For further details, supporting literature, and
specific parameters see Jones et al. (2007) and the web-available code
at http://senselab.med.yale.edu/modeldb/ShowModel.asp?model�
113732.

SYNAPTIC ARCHITECTURE OF EXOGENOUS DRIVE TO SI. Exogenous
drives to the local network were simulated to reproduce 1) ongoing
mu rhythms and 2) evoked responses in the model. In each case, the
exogenous drive was excitatory only (Cauller and Connors 1994;
Cauller et al. 1998; Guillery and Sherman 2002) and was defined by
the laminar location in SI of its synaptic effects based on general
principles of cortical circuitry (Douglas and Martin 2004; Felleman
and Van Essen 1991; Friedman and Jones 1980; Jones 2001; Rock-
land and Pandya 1979). The sources of SI drive were modeled as spike
generators with predefined temporal profiles and postsynaptic conduc-

tances that were distinct for the activity of ongoing rhythmic and
evoked responses (described in the following text).

Feedforward (FF) drive emerged from the granular layer, layer IV,
and contacted the supragranular L2/3 neurons, with a delayed and
weaker connection to the infragranular layer V neurons (see Fig. 1B
for specific poststimulus dendritic compartments). Activity in layer IV
is modeled to reflect drive from the thalamus based on several studies
of intracranial laminar electrophysiological recordings of evoked
responses in SI, including responses to vibrissa and thalamic stimuli
in rodents (Barth and Di 1991; Castro-Alamancos and Connors 1996;
Di et al. 1990; Douglas and Martin 2004; Kandel and Buzsáki 1997),
trigeminal stimulation in piglets (Ikeda et al. 2005), and to tactile
(Cauller and Kulics 1991; Kulics and Cauller 1986) and median nerve
stimuli in awake monkeys (Lipton et al. 2006; Peterson et al. 1995).
The maximal conductances onto INs were always twice as strong as
those onto PNs for all FF inputs (Giove et al. 2003). In our previous
study, this FF drive was referred to as “granular layer output.” For
descriptive purposes, we have changed the nomenclature in the
current study.

Feedback (FB) drive to the SI network contacted the distal apical
dendrites in the supragranular layers of each neural population (Fig.
1C). This connection was representative of input from higher-order
cortical areas or nonspecific thalamic sources (Douglas and Martin
2004; Felleman and Van Essen 1991; Friedman et al. 1980; Jackson
and Cauller 1998; Jones 2001; Rockland and Pandya 1979). In our
previous study, this FB drive was referred to as “supragranular layer
input.”

Temporal dynamics and conductances of ongoing and
evoked exogenous drive to SI

Stochastic ongoing rhythmic drive (Fig. 2) was generated by
delivering 10 “burst” spike trains, each consisting of two spikes with
an interstimulus interval (ISI) of 10 ms, which was set based on
experimental evidence (Hughes and Crunelli 2005), to the SI network
in an FF synaptic activation pattern (Fig. 1C). To reproduce approx-
imately 10-Hz input, all 10 bursts arrived nominally every 100 ms,
with a Gaussian random distribution in arrival time for each burst
(mean ISI of 100 ms; default variance of 400 ms). On every cycle, a
similar input pattern (same number of bursts and arrival time statis-
tics) arrived to the SI network in an FB synaptic activation pattern
(Fig. 1D), delayed from the FF input by a fixed amount. This driving
sequence is shown schematically in Fig. 2. The mean delay between
the approximately 10-Hz FF and FB ongoing inputs, the number of
prestimulus “bursts”/spike trains on each cycle (i.e., the “amplitude”
of the input), the SD of the arrival time of each burst to the SI network
(i.e., the “variance” of the input), and the maximal postsynaptic
conductance of the inputs were varied parametrically to investigate
their separate influence on an expressed mu rhythm (Fig. 8).

Stochastic events in each simulation were regulated by the arrival
time of each of the input bursts, for both FF and FB inputs. On each
cycle of the rhythmic input, the timing of each two-spike burst event
(Fig. 2) was chosen from a Gaussian distribution, with mean fixed at
100-ms intervals (e.g., 0, 100, 200 ms, etc.) and variance of 400 ms.
With this mechanism, on every cycle the relative net postsynaptic
conductance of the FF and FB drives changed. All other parameters
were fixed for each simulation with default values of delay � 5 ms,
number of input bursts � 10, variance of input bursts � 400 ms. The
default conductances for FF and FB inputs were as follows: low mu,
maximal weight of 0.4 picosiemens (pS) onto PNs and 0.8 pS onto
INs; high mu, maximal weight of 0.6 pS onto PNs and 1.2 pS onto
INs. Synaptic weights and delays were distributed by a symmetric 2D
Gaussian spatial profile with maximal weight and minimal delay in
the center and WSC of 100 and DSC of 100 for all connections. The
minimal delay between the FF input and the layer II/III PNs and INs
was 0 ms and the layer V PNs and INs was 1 ms. The driving
parameters for the ongoing rhythmic input in our model were all

TABLE 1. Local network synaptic connection parameters

Parameter

Maximal Conductance,
�S AMPA/NMDA or

GABAA/GABAB WSC

Minimum
Synaptic

Delay, ms DSC

L2/3e to L2/3e 0.0005/0.0005 3 1 3
L2/3e to L2/3i 0.0005 3 1 3
L2/3e to L5e 0.00025 3 1 3
L2/3e to L5i 0.00025 3 1 3
L2/3i to L2e 0.05/0.05 50 1 50
L2/3i to L5e 0.001 50 1 50
L2/3i to L2/3i 0.02 20 1 20
L5e to L5e 0.005/0.0005 3 1 3
L5e to L5i 0.0005 3 1 3
L5i to L5e 0.025/0.025 70 1 70
L5i to L5i 0.02 20 1 20

Targeted dendritic compartments are outlined in Fig. 1A. e, excitatory; i,
inhibitory; WSC, weight space constant; DSC, delay space constant.
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chosen so that the oscillations in the pyramidal neurons remained
subthreshold (Zhu et al. 2009).

EVOKED RESPONSE INPUTS. These were simulated as in Jones et al.
(2007), with a sequence of FF input, followed by FB, followed by a
reemergent late feedforward (LFF) input (schematically drawn in Fig.
9A). The timing of the input sequence was fixed as in Table 2. Each
driving spike train consisted of a single presynaptic spike on each trial
and the weights were distributed uniformly across the SI networks as
in Table 2. The stochastic ongoing drive was unchanged during the
evoked response sequence. Evoked responses were simulated to begin
at various phases in simulated mu-alpha and mu-beta cycles as
described in RESULTS.

CALCULATION OF NET CURRENT DIPOLE. The SI ECD was calcu-
lated as the net sum across the population of the intracellular currents
flowing within the PN dendrites in a direction perpendicular to the
longitudinal axis of the apical dendrite multiplied by the correspond-
ing length of the dendrite.

SIMULATIONS. All simulations were performed using the shareware
software program NEURON (available http://www.neuron.yale.edu/
neuron/). A fixed time-step implicit Euler integration method was
used with a time increment dt � 0.025 ms. Frequency analysis of all

simulated rhythms was identical to that performed on the MEG data.
Simulated evoked responses were smoothed by convolution with a
15-ms box filter. On publication, the code that produced all simulated
data herein will be available on the ModelDB website http://
senselab.med.yale.edu/senselab/modeldb/.

R E S U L T S

MEG experiments

Somatosensory mu rhythm in trial averages. Consistent with
previous studies, the ongoing mu rhythm recorded here ex-
pressed peaks of activity in the mu-alpha (7–14 Hz) and
mu-beta (15–29 Hz) frequency bands. The dual peak in mu can
be observed in the mean and SE across subjects of the PSD
calculated from the frequency range 1–60 Hz (Fig. 3A, blue
curve; n � 10 Ss, mean of 200 1-s prestimulus trials per
subject, calculated with Welch’s periodogram; see METHODS).
Peaks in both the mu-alpha and mu-beta range are evident in
this analysis and the relative mu-alpha and mu-beta expres-
sions vary across subjects (Fig. 3B). The gray curve in Fig. 3A
shows the corresponding results when the data from the three
subjects—whose SI dipole localizations were not determined
by standard methods—were removed (see METHODS) and their
individual subject data are shown in black in Fig. 3B. Although
the overall power of the oscillations is smaller without these
subjects, the overall shape is preserved and the dual-peak mu
phenomenon is still present.

The two distinct components, mu-alpha and mu-beta, can be
visualized more clearly when looking at time–frequency rep-
resentations (TFRs; spectrograms) of the data from two exam-
ple subjects (Fig. 3C, average n � 100 trials of 1-s prestimulus
data, each calculated with Mortlet wavelets; see METHODS). The
spectrograms from these subjects show clear bands of mu-
alpha and mu-beta activity in the average data. We subse-
quently show that, although the relative mu-alpha and mu-beta
expressions across subjects are not the same, the existence of
separable activity in both frequency ranges persists in all
subjects and in single trials.

Somatosensory mu rhythm on single trials. These initial
analyses suggested that there was not a fixed relationship
between mu-alpha and mu-beta expressions across subjects,
indicating different neural generators. To further investigate
the relation between these bands, we analyzed the spontaneous

TABLE 2. Exogenous synaptic input parameters for
evoked responses

Parameter
Input Times Across

Trials
Maximal Conductance, �S Default

AMPA/NMDA

FF to L2/3e 25 0.001
FF to L2/3i 0.002
FF to L5e 0.0005
FF to L5i 0.001
FB to L2/3e 7 0.001/0.001
FB to L2/3i 0.0005/0.0005
FB to L5e 0.001/0.001
LFF to L2/3e 135 0.0053
LFF to L2/3i 0.0053
LFF to L5e 0.0027
LFF to L5i 0.0027

Targeted dendritic compartments are shown in Fig. 1, B and C. FF,
feedforward; FB, feedback; LFF, late feedforward.

FIG. 2. Schematic illustration of alternating 10-Hz FF and FB drive to the
SI network. Approximately every 100 ms (Gaussian, mean interstimulus
interval [ISI] 100 ms, SD � 20 ms), 10 “bursts” of input (doublet spike trains,
ISI 10 ms) excite the SI network in an FF connection pattern followed by an
analogous delayed FB input. Red and blue arrows depict intracellular current
flow. FF inputs induce current flow up the dendrites and FB inputs current flow
down the dendrites.
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SI signal in individual trials. Figure 4 shows two examples of
SI frequency distributions and corresponding waveforms dur-
ing 1-s prestimulus epochs for four subjects. These spectro-
grams are different from the average responses (Fig. 3C). In
single trials, periods of high mu-alpha and mu-beta power
often have nonoverlapping time courses. We note that subjects
3 and 4 had nonstandard dipole localizations and larger overall
power (Fig. 3B). However, these subjects still showed the char-
acteristic periods of nonoverlapping high mu-alpha and mu-beta
power. This feature implies that these rhythms are not simple
harmonics, further indicating separable neural generators.

To quantify this observation, we calculated the probability
that high power in mu-alpha and mu-beta was expressed
simultaneously in the spontaneous mu rhythm. We sorted the
relative power of mu-alpha and mu-beta in each 100-ms
window. We then calculated the probability that bins in the top
third of the mu-alpha and mu-beta power distributions were
identical. If these rhythms were generated from an identical
neural process, they would be predicted to correlate perfectly.
A completely random association would predict overlap on
roughly 10% of bins. We found overlap on 50% of bins (Fig. 5,
inset, 50.31% mean, SD � 0.056% n � 10 Ss, calculated from
2,000 100-ms time windows per subject). This finding implies
a degree of independence for the two rhythms, but also that
they co-occurred at greater than chance levels, suggesting they
share components of neural mechanism.

To further characterize the relation between alpha and beta
occurrence, we plotted a histogram of the ratio of alpha to beta
power calculated in the same 100-ms time windows (Fig. 5,
n � 2,000 trials, 10 Ss, 1,000 bins). The mean and median of

the histogram were 2.4 and 1.3, respectively. The normaliza-
tion applied to the TFR data in our analysis favors the obser-
vation of higher-frequency bands (see METHODS). As such, the
dominance of alpha power in this analysis, despite the normal-
ization applied, underscores the relative prevalence of this
oscillation in the mu signal.

Computational neural model

Simulating MEG SI activity. We have previously developed
a laminar SI model that predicted the neural origin of the
tactile-evoked response in MEG and provided insight into the
changes in this response that predicted successful detection of
a threshold-level stimulus (Jones et al. 2007). Here, we ex-
panded this model from 10 pyramidal neurons (PNs) and 3
interneurons (INs) per layer, to a grid of 100 PNs and 35 INs
per layer (see METHODS, Fig. 1) and used it to investigate the
neural origin of the spontaneous SI mu rhythm, its modulations
in power, and how these modulations influence cortical excit-
ability and evoked response gain.

As in our previous study (Jones et al. 2007), the model
consisted of a biophysically realistic laminar cortical model of
a local SI network (Fig. 1). Two types of exogenous drive
provided excitatory synaptic input to the SI column, one in an
FF connection pattern representing input from the thalamus to
layer IV and subsequently to layer II/III (Fig. 1B), and one in
an FB connection emulating higher-order cortical sources to
the superficial layer II/III (Fig. 1C).

The MEG SI ECD is calculated by the net longitudinal
current flow within PNs in the model (Hamalainen et al. 1993;

FIG. 3. Magnetoencephalographic (MEG)
SI mu rhythms. A, blue curve: grand mean power
spectral density (PSD) vs. frequency averaged
across 10 subjects, 200 trials each (SE bars)
showing 2 peaks of activity in the mu-band be-
tween 7 and 29 Hz. Gray curve: analogous curve
with removal of data from 3 subjects with non-
standard SI dipole localization methods. B: PSD
vs. frequency in each subject; subjects with non-
standard dipole localization are shown in black.
C: example frequency vs. time spectrograms av-
eraged over 100 trials (1-s prestimulus time pe-
riod) from 2 subjects, emphasizing that the SI mu
rhythm is a 2-component rhythm containing sep-
arate bands of mu-alpha and mu-beta activity.
The unit of power is (Am)2.
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Hari and Salmelin 1997; Hari et al. 1980; Ikeda et al. 2005;
Jones et al. 2007; Okada et al. 1997). Therefore the polarity of
the waveform of a given oscillation provides specific insight
into the direction of current flow within the pyramidal neurons
across the cortical lamina. In a previous study (Jones et al.
2007), we determined that positive polarity corresponded to net
current flow anterior, which in the case of area 3b corresponds
to flow “up” the PN dendrites toward the cortical surface and
negative polarity corresponded to net current flow down the PN
dendrites toward the cell bodies/white matter (see METHODS).
The example single-trial waveforms of the spontaneous SI mu
rhythm in Fig. 4 (bottom panels) oscillated around zero for
each subject, suggesting current flow that oscillates up and
down the cortical laminae.

Nearly synchronous stochastic FF input followed by FB
input creates a physiologically realistic mu rhythm. Our strat-
egy for simulating single-trial mu rhythms in the model was
based on current theories as to the origin of 10- and 20-Hz
activity in the cortex (see INTRODUCTION and METHODS). In
expanding our cortical model to study the mu rhythm, we
included several intrinsic currents in our PNs that have previ-
ously been proposed to be important in the generation of alpha
and beta activity (h-currents, T-currents, M-currents, Ca-cur-
rents). We initially thought that these currents would be essen-
tial for the generation of the mu-alpha and mu-beta compo-

nents of the SI mu rhythm. Because our network was trying to
reproduce in vivo data from awake humans, we also included
exogenous driving inputs to the SI network in an FF and FB
manner (Fig. 1). In the following text, we show that, whereas
the intrinsic currents necessarily define the time constant of
integration along the dendrite, the timing and strength of the
excitatory FF and FB inputs determine the mu-alpha and
mu-beta expression.

To simulate the single-trial spontaneous SI MEG mu
rhythms, as shown for example in Fig. 6A, we first drove the SI
network with a stochastic approximately 10-Hz burst of FF
rhythmic drive, to see whether the mu rhythm would emerge
from this simulated rhythmic lemniscal thalamic input com-
bining with intrinsic cellular and local network properties.
Details of the driving sequence are shown in Fig. 2 and
described in METHODS.

The spectrogram from the simulated data in Fig. 6B shows
that approximately 10-Hz FF rhythmic input alone created a
primarily 10-Hz response in the model. The corresponding
waveform shows that each cycle of the FF input created an
upward current flow in the pyramidal neuron dendrites, result-
ing in a solely positive-polarity oscillation that lasted about 100
ms. This waveform contrasts with MEG data, where the po-
larity of the signal oscillates around zero (compare waveforms
in Fig. 6, A and B; see also Fig. 4), suggesting that the current

FIG. 4. Single-trial mu rhythms. Two examples of single-trial SI frequency spectrograms and waveforms from 4 subjects. The unit of power is (Am)2. On
a single-trial basis, peaks in mu-alpha and mu-beta power often occur at different points in time, indicating that the rhythms are not harmonics of each other and
may have different neural sources. The corresponding waveforms oscillation around zero polarity.
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flow oscillates up and down the pyramidal neurons. Impor-
tantly, consistent with the notion that large-scale MEG/EEG
ongoing oscillations represent the subthreshold activity of large
numbers of synchronous neurons (Zhu et al. 2009), the driving
parameters in our model were all chosen so that the oscillations
in the pyramidal neurons remained subthreshold.

Our previous modeling study (Jones et al. 2007) showed that
negative-polarity signals could be produced by FB excitatory
input to the apical dendrites of pyramidal neurons lying in the
superficial layers that induce a downward current flow. There-
fore emulating approximately 10-Hz FB, a second stochastic
10-Hz burst of rhythmic excitatory synaptic input was provided
to the apical dendrites of the layers II/III and V pyramidal
neurons. The statistics of this FB drive were analogous to the
FF drive, as described in METHODS and shown schematically in
Fig. 2. Approximately every 100 ms, an FF burst was followed
by an FB burst. In the example shown in Fig. 6C, on each
cycle, the FF and FB inputs were nearly synchronous (Gauss-
ian mean difference, 5 ms; FF and FB weights, 0.4 pS; n � 10;
variance, 400). See the following text for further details on the
importance of phasic latency and other input statistics (Fig. 8).
Under these conditions, the 10- and 20-Hz components of the
mu rhythm were robustly reproduced and the waveform of the
rhythm oscillated around zero, with a subset of nonsimulta-
neous intervals of strong mu-alpha and mu-beta power, as
observed in our MEG data (compare Fig. 6C with Fig. 6A and
Fig. 4). The parameters regulating the mu-alpha and mu-beta
components are described in detail in the following section
(Fig. 7).

To test whether the waveforms are symmetric around zero,
we calculated a symmetry index (SInd) for the MEG (Fig. 6D)
and model data (Fig. 6E). The SInd was derived as described
in METHODS and is such that a positive SInd value indicates
greater-amplitude peaks, a negative value indicates greater-
amplitude troughs, and a zero value indicates that an oscillation
was symmetric around zero. Figure 6D (top panel) depicts the
mean and SD of the SInd for each of the 10 subjects (n � 200,

1-s prestimulus trials); the bottom panel shows a histogram of
the SInd across all subjects and trials, with the inset showing
the mean and SD of the histogram. The SD of each individual
subject overlaps zero, with four subjects �0 and six �0. The
SInd was not significantly different from zero across the
subjects (P � 0.001, t-test). Similarly, Fig. 6E shows a histo-
gram of the SInd across trials in the model (n � 40, 1-s trials,
parameters as in Fig. 6C) and inset with mean and SD of the
histogram. As in the MEG data, the SInd index in the model
was not significantly different from zero (P � 0.001).

In the model, prominent mu-beta cycles emerged when the
stochastic FB input came in at the proper moment and strength
to cut the FF alpha cycle in half (compare red boxes in Fig. 6,
B and C), creating an oscillation that looks similar to that in the
MEG data (Fig. 6A). As described historically in recordings of
the MEG mu rhythm, our SI signal waveforms exhibit a
“comb-like” or “arch-shaped” signal (Tiihonen et al. 1989),
where the upward deflections appear more rounded, whereas
the downward deflections have sharp edges forming what looks
like several connected arches, as shown in Figs. 4 and 6A. This
feature is also qualitatively reproduced by our model data (Fig.
6C) and arises as follows in the model. The 10-Hz FF input
produces positive upward deflections that last about 100 ms
(i.e., the rounded portion of the “arch”; Fig. 6B, right). The
additional nearly 10-Hz FB input acts to push current flow in
the opposite direction. In the example shown in Fig. 6C, the
10-Hz FF and FB inputs arrive nearly synchronously (5-ms
delay); thus for part of the upward deflection the FB input
works directly against the FF input, whereas at the end of the
upward deflection, the FB input is able to abruptly push current
flow down the dendrites, creating the “sharp” downward edges
of the arch.

To create oscillations that were the same magnitude as that
of oscillations seen experimentally, on the order of 100 nAm
(Fig. 6A, right), the modeling data were multiplied by 30,000
(Fig. 6. B and C, right), which suggests that the subthreshold
activity of nearly 200 � 30,000 � 6 million layers II/III and V
pyramidal neurons contributed to the observed mu rhythm.
Based on the general estimate of about 75,000 PNs per about
1 mm2 of the cortical sheet (Cheung et al. 2007), these findings
suggest that in this study, about 80 mm2 (0.8 cm2) of cortical
space was synchronized to generate the observed rhythms. This
volume estimate would lie within the volume of the human
hand representation, defined as the omega-shaped bend in the
postcentral gyrus (Moore et al. 2000). This prediction is sig-
nificantly larger than the number of neurons predicted to
contribute to the tactile-evoked response in our previous and
current modeling results shown in Fig. 9A, which was on order
of 60,000 spiking neurons (200 PNs � 300 scaling factor �
60,000 PNs).

Statistical properties of the mu rhythm on single trials. To
further validate the model prediction that the SI mu rhythm is
created by nearly synchronous, stochastic, alternating 10-Hz
FF and 10-Hz FB inputs, we quantified other properties of the
simulated mu rhythm in a manner analogous to the MEG data.
In each case, we found consistency between the MEG and
model data.

First, we calculated the mean and SE of the PSD for
frequencies from 1 to 60 Hz across 100 1-s trials of the
stochastically simulated spontaneous mu rhythm (Fig. 7A, n �
50 trials; all parameters fixed as in Fig. 6C). Peaks of activity

FIG. 5. Mu-alpha and mu-beta components of the MEG SI mu rhythm are
nonoverlapping MEG data showing a histogram of the ratio of alpha to beta
power over 100-ms time bins (n � 2,000 trials, 10 Ss). The mean (2.4) and
median (1.3) of this histogram are �1, underscoring the relative prevalence of
alpha power in the mu signal. Inset: MEG data showing probability that high
mu-alpha and mu-beta power (top 33% of all power) occur simultaneously
roughly 50% of the time (mean � 50.31%; SD � 0.056%).
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emerge in the mu-alpha and mu-beta range. As in the grand
average MEG data, the mu-alpha power has a higher peak in
this PSD analysis, but a second smaller peak in the mu-beta
range is also present (compare Fig. 7A with Fig. 3A).

Second, we calculated the probability that, for a given
100-ms time window, mu-alpha and mu-beta were in the top
third of trials sorted from low to high power in the model. We
found that they co-occurred roughly 50% of the time (Fig. 7B,
inset, 48.7% calculated from 100 100-ms time windows),

analogous to the mean of our grand-average MEG data (com-
pare with Fig. 5, inset).

Third, we plotted a histogram of the ratio of alpha to beta
power calculated in 100-ms time windows (Fig. 7B, grand total
1,000 prestimulus time windows, 100 bins). We found that the
distribution of this histogram had the same qualitative shape as
that calculated from the MEG data (compare Figs. 7B and 5).
Further, as in the MEG data, the mean (1.4) and median (1.1)
of the histogram were �1. A further examination of the model

FIG. 6. Modeling SI mu rhythms with alternating nearly synchronous approximately 10-Hz FF and FB input. A: MEG data showing an example prestimulus
SI mu rhythm from a single trial. B: simulating 10-Hz stochastic FF inputs only to SI (depicted schematically in Fig. 2) reproduces a strong 10-Hz MEG signal
and very weak 20 Hz. The unit of power is (Am)2. C: alternating 10-Hz FF followed by 10-Hz FB inputs (5-ms delay) reproduces equal power, nonoverlapping,
10- and 20-Hz components, with a waveform that oscillates around zero, analogous to the experimental MEG data. Red boxes show that mu-beta cycles emerge
when the FB input is strong enough to cut the mu-alpha oscillation in half. D, top: mean and SD of the symmetry index (SInd) of the MEG SI mu rhythm
waveform around zero, for each subject. Bottom: histogram of SInd across all subjects and trials. Inset: mean and SD of histogram. The SInd is not significantly
different from zero (P � 0.001). E: analogous histogram of SInd across trials in the model (n � 40, 1-s trials, parameters as in C), which is also not significantly
different from zero (P � 0.001). Inset: mean and SD of histogram.

FIG. 7. Mu-alpha and mu-beta components
of model SI mu rhythms are nonoverlapping.
A: PSD vs. frequency averaged across 50 trials
(SE bars) showing 2 peaks of activity in the
mu-band between 7 and 29 Hz, in agreement
with the MEG data (compare with Fig. 3A).
B: model data showing a histogram of the ratio
of variance to power over 100-ms time win-
dows (n � 1,000 trials). The mean (1.4) and
median (1.1) of this histogram are �1, analo-
gous to the MEG data (compare with MEG
data in Fig. 5). Inset: model data showing
probability that high mu-alpha and mu-beta
power (top 33% of all power) occur simulta-
neously roughly 50% of the time (mean �
48.6%, calculated from 100 0.1-s time win-
dows of simulated data; compare with MEG
data in Fig. 5, inset).
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parameters controlling the relative dominance of alpha and
beta power is given in the following text (Fig. 8).

Parameters controlling relative mu-alpha and mu-beta
power dominance. We varied the statistics of the input patterns
shown schematically in Fig. 2 and detailed in METHODS, to
examine their effect on the dominance of mu-alpha or mu-beta
power expressed in the spectrograms generated from the model
data. We began by parametrically varying the mean delay
between the approximately 10-Hz FF and FB input, from 0 to
95 ms at 5-ms intervals (Fig. 8A; all other parameters were
fixed as in Fig. 6C; also see METHODS). We calculated the mean
ratio of mu-beta/mu-alpha power over a 1-s simulation and
found that when inputs arrived nearly synchronously with FB
following FF (delay �10 ms), or vice versa, the relative
dominance of mu-alpha and mu-beta power was approximately
equal (mu-beta/mu-alpha power � 1; see endpoints of parabola
in Fig. 8A). In contrast, when the alternating approximately
10-Hz FF and FB inputs were asynchronous (delay � 50 ms),
the mu-alpha rhythm dominated the signal (mu-beta/mu-al-
pha � 0). In this case, the FF input created a positive-polarity
signal for half of a 10-Hz cycle and the FB input created a
negative-polarity signal for the remaining half of a 10-Hz
cycle, where the peaks of the two halves are 50 ms apart,
defined by the 50-ms delay (data not shown).

We then investigated the influence of the variance (relative
synchrony in presynaptic spiking, set by the SD of the “input
bursts”), amplitude (measured as number of “input bursts”),
and efficacy (differences in the postsynaptic conductance
evoked by an identical presynaptic input) of the separate FF
and FB inputs on the relative mu-beta to mu-alpha power (Fig.
8, B, C, and D, respectively; each parameter was tested at the
three values on the x-axis; see METHODS and Fig. 2 for definition
and illustration of each parameter). In each case, manipulations
that enhanced the FF drive [increased synchrony (decreased
variance), amplitude, and postsynaptic conductance] increased
mu-alpha power (red curves), and manipulations that enhanced
FB drive increased mu-beta power (blue curves).

Each of these mechanisms for increasing drive to the net-
work [increased synchrony (decreased variance), amplitude,
and efficacy of postsynaptic input] had the net effect of
increasing the size of the net postsynaptic conductance. Based
on this parameter search, in the remainder of our modeling
investigation we simulated high mu power by simultaneously
increasing the postsynaptic conductance of the FF and FB
inputs, thus producing an increase in mu-alpha and mu-beta
power (Fig. 8E). Low mu power was simulated with smaller
postsynaptic conductance (high mu 0.6 pS to PNs and 1.2 pS
to Ins; low mu 0.4 pS to PNs and 0.8 pS to INs).

Impact of mu power on tactile-evoked responses. Our pre-
vious modeling results indicated that the SI-evoked response
measured with MEG was created by a specific temporal se-
quence of exogenous excitatory inputs to the SI network (Jones
et al. 2007). This sequence consisted of FF input at �25 ms
poststimulus, followed by FB input at �70 ms, and by a late

FIG. 8. Statistics of FF and FB input that influence relative mu-alpha and
mu-beta power. A: small delays (mean �10 ms) between approximately 10-Hz
FF and FB drives create nearly equal mu-alpha and mu-beta power (mu-beta/
mu-alpha � 1). If the FF inputs are increased via increased synchrony
(decreased variance, B), amplitude (C), or postsynaptic conductance (D), the
relative mu-alpha dominance increases (mu-beta/mu-alpha decreases, red
curves). Analogous increases in the FB input increase the relative mu-beta
power (mu-beta/mu-alpha increases, blue lines). E: simulated high and low mu
rhythms (Low Mu FF � FB postsynaptic conductance � 0.4e-4 millisiemens
[mS], High Mu FF � FB postsynaptic conductance � 0.6e-4; each FF � FB
variance � 400 ms and amplitude � 10 input bursts). The unit of power is
(Am)2. Black bars represent time windows in which evoked responses are
simulated in Fig. 9A.
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feedforwad (LFF) input at �135 ms (shown schematically in
Fig. 9A, where each input consisted of single presynaptic
spikes per trial; see METHODS). The sequence that induced the
SI-evoked signal may be interpreted as initial FF input from the
periphery through the lemniscal thalamus to granular layers,
followed by FB input from higher-order cortex or nonspecific
thalamic sources to the supragranular layers, followed by a
second wave of lemniscal thalamic input to the granular layers.

Here, we used our expanded model to investigate the effects
of prestimulus mu power on SI-evoked response magnitude
and timing. The evoked response input sequence was delivered
at several starting phases (SPs) within simulated high and low
prestimulus mu-alpha and mu-beta cycles (marked with black
bars in Fig. 8E) and results were averaged (Fig. 9A). The SP is
defined as the mean time of the initial lemniscal thalamic FF
input to the SI network, which was followed by FB input 45 ms
later (mean SP �45 ms) and a subsequent LFF input 65 ms
later (mean SP �65 ms). This sequence was delivered at 20
different equally spaced SPs in the marked mu-alpha cycle and
10 different equally spaced SPs in the marked mu-beta cycle;

the results were averaged over all 30 trials (see Table 2 for
default postsynaptic conductances and input times of evoked
response inputs).

When given during either high or low prestimulus mu
power, the average simulated evoked response created a wave-
form with a negative-polarity peak at about 70 ms (M70) and
two positive-polarity peaks at about 100 ms (M100) and about
135 ms (M135), respectively (Fig. 9A). The timings and
polarities of the peaks are similar to those generated in our
previous study, in which prestimulus rhythms were not con-
sidered (Jones et al. 2007).

Several significant differences emerged in the evoked re-
sponse waveforms simulated during low and high prestimulus
mu conditions (compare dark and light blue curves in Fig. 9A;
red stars indicate time points where the difference was P �
0.05; purple stars: P � 0.01, paired t-test, n � 30 trials). The
greatest difference was the emergence of a positive peak near
approximately 50 ms, labeled M50, under high prestimulus mu
that was negligible under low mu (M50 � max 40–60 ms, P �
0.01). In addition, in the model, the magnitude of the M70 was

FIG. 9. Modeling the impact of mu on
SI-evoked responses. A: simulated evoked
responses under high and low mu conditions.
High mu creates an early positive peak at
about 50 ms (M50) and subsequent sup-
pressed response at about 70 ms and later
(difference between high and low mu; purple
stars, P � � 0.01; red stars, P � � 0.05,
paired t-test, mean n � 30 trials each, with
starting phases equally spaced in mu-alpha
and mu-beta cycles shown with black bars in
Fig. 8E). B: MEG SI-evoked responses
sorted over high and low prestimulus mu
power (50% detection rate) reveals early
M50 peak and trend to decreased M70 peak
under high mu, as predicted by the model
(red stars, P � � 0.05). C: evoked spike
rates of neuron populations under high and
low prestimulus mu. Under high mu condi-
tions, the initial roughly 25-ms evoked input
to the SI network induces greater firing in the
INs and PNs and thus an early positive peak
near 50 ms (M50) in the SI-evoked response.
Activity in the INs suppresses subsequent
firing and a slight decrease in the magnitude
of the evoked response, beginning at about
70 ms. In contrast, under low mu conditions,
the initial evoked input induces little inhibi-
tory firing from the initial FF at �25 ms
input and thus a slightly greater evoked re-
sponse beginning at about 70 ms.
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smaller (M70 � min 50–100 ms, P � 0.05). There were also
slight but significant differences between the M100 and M135
peaks, and later [150–175] ms activity such that the magnitude
was larger under low mu conditions (M100 � max 75–125;
M135 � max 125–175, mean 150–175 ms, P � 0.05; see Fig.
9A). Predictions as to the underlying neural activity creating
these differences are discussed in the following text (Fig. 9C).

We next related these predicted differences to the SI-evoked
response waveforms in the MEG signal and found consistency
between the model and experimental data. Figure 9B shows the
MEG SI-evoked response sorted over high and low prestimulus
mu trials for an equal number of hit-and-miss trials comprising
a 50% detection rate (n � 10 Ss, 30 high and low mu trials per
subject). We found that the prestimulus mu power significantly
influenced the early evoked response (�70 ms), and showed
trends to a difference in the later components. As in the model
data, a significant positive peak near 50 ms, labeled M50,
emerged under high prestimulus mu (Fig. 9B, P � 0.05 marked
with red asterisks). This peak was followed by a trend that
approached significance for a decreased M70 peak under high
mu (M70 � min 60–75 ms, n � 7/10 Ss, P � 0.1 sign-test),
followed by a late trend toward larger magnitude under high
mu (mean 150–175 ms, n � 8/10 Ss, P � 0.055 sign-test).

The late trend to higher-magnitude response under high mu
conditions and the nonreturn to baseline between the M100 and
M135 peaks, in the MEG data are discrepant with the model
results. The nonreturn to baseline was also observed in our
previous study (Jones et al. 2007) where the strengths of the FF
and FB inputs in the current study were derived. One way that
this difference could be rectified in the model is by assuming
that the late FF input at �135 ms synchronously drives a
greater number of neurons. This effect can be achieved in the
model by multiplying by a separate increased scaling factor at
the late time points (�100 ms; data not shown). A large late FF
input that occurs �135 ms after the stimulus may arise as part
of an induced poststimulus approximately 10-Hz thalamocor-
tical oscillation, which may be stronger with high prestimulus
mu. A strong induced 10-Hz oscillation is consistent with the
notion that the stimulus “phase resets” the 10-Hz component of
the oscillation (Hanslamayer et al. 2007; Makeig et al. 2002).

Increased excitation and inhibition during high mu influ-
ences the M50 and M70 and evoked response peaks. To better
understand how increased prestimulus drive during high-pre-
stimulus mu rhythms created an initially larger M50 response
followed by a smaller M70 and later response between the
M100 and M135 peaks, we examined the evoked spiking in the
network model. We plotted the mean number of spikes
(smoothed over 5-ms bins) for the pyramidal and inhibitory
neuron populations in our network during high and low pre-
stimulus mu power (Fig. 9C, pooled responses, 30 trials). We
found that when the evoked response was simulated during
high mu power (light blue curves), the FF input at �25 ms
induced more spiking in pyramidal and inhibitory neurons in
layers II/III and V compared with low mu (dark blue curves).
Firing in the pyramidal cells to the initial FF approximately 25
ms input peaked near 50 ms, creating the initial M50 positive
peak seen in the evoked response following high prestimulus
mu (light blue curve, Fig. 9A). The positive polarity of the M50
peak comes from back-propagation of action potentials up the
apical dendrites of the pyramidal neurons (Jones et al. 2007).
The strong early evoked inhibition suppresses the pyramidal

response to subsequent FB input at about 70 ms, creating a
decreased response and less spiking under high mu conditions
(compare �70 ms dark and light traces for L5 and L2/3 excitatory
cells in Fig. 9C). In turn, the decreased activity in the E cells
created a smaller M70 and later responses in the model (compare
dark blue and light blue curves in Fig. 9A).

D I S C U S S I O N

We used MEG imaging and biophysically principled com-
putational neural modeling to provide a detailed characteriza-
tion of the mu-alpha and mu-beta components of the sponta-
neous SI mu rhythm, investigate its neural origin, and inves-
tigate its impact on early (0–175 ms) evoked responses. The
MEG recordings revealed an SI mu rhythm with mu-alpha and
mu-beta components, whose relative expression was subject
dependent. On single trials, the mu-alpha and mu-beta compo-
nents were not simultaneous in their emergence, but did co-
occur at rates greater than chance.

Our model results led to the novel prediction that the SI mu
rhythm arises from a stochastic nearly synchronous alternating
sequence of approximately 10-Hz FF followed by FB excita-
tory input to SI. Simulating mu in this manner reproduced
many key features of the MEG data, including: a mu rhythm
with both mu-alpha and mu-beta components; a rhythm that
oscillates symmetrically around zero polarity; nonsimultaneity
of mu-alpha and mu-beta components in time; and an enhanced
early (M50) peak in the tactile-evoked response under high mu.

The predicted enhancement in the early response when stimu-
lus presentation coincided with epochs of high mu power was
observed in our data. We note that the model was completed prior
to running our analyses of rhythmogenesis or evoked response
modulation and that the only model parameters available to ma-
nipulation during analysis were those described in the text (pri-
marily the strength and arrival synchrony of FB and FF signals).
The convergence of experimental and model analysis given this
principled modeling approach supports the predictive value of the
neural interpretation of model behavior.

To our knowledge, our results provide the first evidence that the
mu rhythm arises from the combination of two stochastic approx-
imately 10-Hz rhythms that arrive to the SI network at different
laminar locations corresponding to thalamic FF input and intra-
cortical FB input. Because the rhythmic approximately 10-Hz FF
and FB inputs and SI cortical structure in our model are defined by
general principles of cortical circuitry (Felleman and Van Essen
1991; Hughes and Crunelli 2005), the predicted mechanisms may
be applicable to the generation of mu-alpha and/or mu-beta fre-
quency rhythms observed in other cortical areas. Table 3 summa-
rizes the results of our MEG findings, the corresponding predic-
tions of our biophysical model, and the mechanistic interpretation
of each finding from the model.

Importance of feedforward and feedback input

In expanding our previous SI model (Jones et al. 2007) to
study mu rhythms, we included several pyramidal neuron
intrinsic currents (see INTRODUCTION and METHODS) and local
excitatory and inhibitory interactions, hypothesizing that these
factors would prove important for the generation of the mu-
alpha and mu-beta components of the SI mu rhythm. Because
our network was trying to reproduce in vivo data from awake
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humans, we also included exogenous driving inputs to SI in an
FF and FB manner (Fig. 1). In contrast to our initial assump-
tions, we found that although the intrinsic current kinetics in
the pyramidal neurons were essential to the time constant of the
subthreshold integration of current flow along the dendrites,
the dominant time constants regulating mu-alpha and mu-beta
frequency in the model were determined by the relative
strength and timing of the exogenous rhythmic excitatory
inputs that drive current flow up and down the pyramidal
neuron dendrites (Fig. 8). These exogenous inputs were nec-
essary to accurately reproduce 10- and 20-Hz components and
distribution of the awake human SI mu rhythm.

Intuitively, one might predict that alternating 10-Hz inputs at
a 50-ms delay would ideally combine to generate a 20-Hz
MEG signal. However, our results suggest that the inputs must
arrive nearly simultaneously (�10 ms) for 20-Hz cycles to
emerge. In this case, approximately 10-Hz current flow that is
driven up the pyramidal neuron dendrites (via FF input) is cut
in half by current flow driven down the dendrites (via FB input)
to create a 20-Hz cycle. With perfectly asynchronous (50-ms
delay) FF and FB inputs, a dominant mu-alpha rhythm is
produced. This result, and the fact that stronger FF inputs
increase mu-alpha, whereas stronger FB inputs increase mu-
beta (Fig. 8, B–D), leads to direct predictions as to the source
of variability in mu-alpha or mu-beta expression across sub-

jects (Fig. 3B). We may surmise that subjects with dominant
mu-alpha components possess stronger rhythmic FF input
and/or that the intracortical FB input arrives with a phase delay
near 50 ms. In contrast, we predict that subjects with dominant
mu-beta components possess stronger FB input and/or nearly
perfectly aligned (�10-ms delay) FF and FB inputs.

Subthreshold oscillations and their relation
to higher-frequency gamma rhythms

Several studies report that low-frequency alpha and/or beta
range rhythms are directly coupled to higher-frequency gamma
(40–80 Hz) rhythms. This effect has been observed in vivo in
humans in electrocorticographic data (Canolty et al. 2006),
MEG data (Palva et al. 2005a), and intracranial cortical LFP
recordings (Lakatos et al. 2005; Schroeder and Lakatos 2009b).
In our data, we do not see prominent gamma activity in the
prestimulus time period (Fig. 3), likely due to the fact that our
MEG signal measures the subthreshold synchronous activity of
a large number of pyramidal neurons (Hamalainen et al. 1993;
Zhu et al. 2009), estimated to be on the order of 6 million.
Gamma rhythms are likely produced by a smaller subnetwork
of spiking excitatory and inhibitory neurons (Cardin et al.
2009; Kopell et al. 2000; Pinto et al. 2003; Vierling-Claassen
et al. 2008; Whittington et al. 2000) and are thus not recorded

TABLE 3. Summary of MEG results, model reproductions, and predicted neural mechanisms

MEG Data Model Reproduction Predicted Neural Mechanisms

(1) Mu rhythm originating from SI with mu-
alpha and mu-beta components (Fig. 3).

Net subthreshold intracellular current flow in layers
II/III and V PNs (the simulated SI MEG signal)
produced a mu rhythm with mu-alpha and mu-
beta components (Fig. 6C).

The mu-alpha rhythm is generated by thalamic
lemniscal input generating current flow
propagation up the PN dendrites primarily
away from the soma. The mu-beta rhythm
is generated by input from other cortical
regions outside the hand representation
expressing a mu-alpha oscillation. This
input arrives in layers II/III and generates
current flow “down” PN dendrites toward
the soma. The arrival time of this
intracortical input is stochastic and nearly
synchronous in alternating with the ongoing
approximately 10-Hz FF thalamic input.
Alternative distal dendritic inputs (e.g., from
nonspecific thalamic projections) could also
contribute to mu-beta emergence.

(2) Mu rhythm oscillates around zero with both
current polarities present (Figs. 4 and 6, A
and D).

Simulated mu rhythm exhibited current flow that
oscillates up and down the cortical layers
symmetrically around zero (Fig. 6, C and E).

Alternating excitatory synaptic drive to
dendrites in the infragranular layers (FF)
and supragranular (FB) layers drives
subthreshold intracellular current flow up
and down the PN dendrites.

(3) Mu-alpha and mu-beta components often
occurred at different times (Figs. 4 and 5).

Simulated mu rhythm contained mu-alpha and mu-
beta components that had the same simultaneity
characteristics as those of the MEG data (Figs.
6C and 7B).

Stochastic in timing of each FF and FB “input
burst” (Fig. 2), arriving about every 100 ms,
changes the relative dominance of the net
FF and FB input strength on each cycle.
Enhancing the FF inputs increases the mu-
alpha power, whereas enhancing the FB
inputs increases the mu-beta power (Fig. 8).

(4) As predicted initially by the model, tactile
evoked responses during high prestimulus
mu-, compared with low-mu conditions,
exhibited an early M50 positive peak,
followed by a trend toward a decreased M70
peak (Fig. 9B).

Simulated SI evoked responses via a sequence of
FF (�25 ms post-stim) followed by FB (�70
ms) and LFF input (�135 ms) input during high
mu, compared with low mu (Fig. 8E) exhibited
an early M50 positive peak and a decreased M70
peak (Fig. 9A).

High-mu states created an ongoing
depolarization in the PNs and INs, causing
greater firing in both populations to the
initial FF input. Back-propagation of action
potentials in the PNs created the M50 peak.
Recruited inhibition in turn decreased the
subsequent excitatory cell response to the
approximately 70-ms FB input, decreasing
the M70 peak (Fig. 9C).
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in our signal. Further, due to the limited size of our network,
the model cannot currently simultaneously reproduce both
large- and small-scale phenomena.

Coordination of ongoing 10- and 20-Hz activity between
brain areas

The prediction that the SI mu rhythm is driven by approxi-
mately 10-Hz rhythmic FF and FB in the model implies that the
SI mu rhythm is correlated with 10-Hz activity in lemniscal
thalamic sources (providing FF inputs), as well as in higher-order
cortical sources (providing FB inputs) and/or nonlemniscal tha-
lamic input. These hypotheses are consistent with several studies
that report the existence of coherence in power (Schubert et al.
2008; Zhang and Ding 2009) and phase-locking (Hanslmayr et al.
2007; Palva et al. 2005a) between SI mu rhythms and alpha and
beta frequency activity in prefrontal cortex and other higher-order
cortical areas. Most significantly, Zhang and Ding (2009) recently
applied Granger causality analysis to 10-Hz activity measured
from EEG electrodes above somatosensory and prefrontal cortices
and found that 10-Hz activity propagates from prefrontal cortex to
SI. Palva et al. (2005) observed local cross-frequency phase syn-
chrony between alpha- and beta-band oscillations widely across
the cortex, particularly over the somatomotor regions, during rest
conditions that increased with execution of mental arithmetic
tasks (see also Nikulin and Brismar 2006). Interareal 10- to 10-Hz
phase synchrony (and even more so 10- to 20-Hz synchrony)
increased with task demands with the strongest effects at long
distances. Hanslmayr et al. (2007) examined interareal within-
frequency phase synchrony between EEG electrodes during a
visual-perception task and found prestimulus alpha (8–12 Hz)
phase synchrony mainly between frontal and parietal electrode
sites that decreased with perception. Beta (20–30 Hz) phase
synchrony was also observed and increased with perception.
Schubert et al. (2008) used EEG during a somatosensory percep-
tual masking task and found that prestimulus beta activity (18–26
Hz) in prefrontal and sensorimotor electrodes covaried such that
they were both lower during perceived trials. These results em-
phasize the cooperation of alpha- and beta-band activity across the
brain and support the prediction that the SI mu rhythm may arise
from rhythmic interactions of 10-Hz oscillations projected to SI in
an FB manner from higher-order areas. However, our FB inputs
could also arise from nonspecific thalamic inputs oscillating with
a slight phase shift from that of the lemniscal driver nucleus
(Guillery and Sherman 2002; Hughes and Crunelli 2005; Jones
2001). The prediction of near synchrony in inputs necessary to
generate beta may be better explained by a common thalamic
source, which may represent a different form of “feedback” or
may represent a distinct form of input.

Symmetric oscillations and their relation to
evoked responses

Our finding that the prestimulus SI mu rhythm oscillates sym-
metrically around zero is in contrast to previous studies that have
observed nonsymmetric alpha-frequency oscillations that contrib-
ute to the generation of late (�250 ms) components of sensory-
evoked responses. Nikulin et al. (2007) reported baseline shifts in
mu-alpha frequency activity in sensorimotor MEG sensors on the
scalp. These shifts in the mean of the oscillation over time were
reported to be responsible for late (�250 ms) components of

median nerve-evoked response. In another study, Mazaheri and
Jensen (2008) observed asymmetric amplitude modulations in
posterior alpha activity that was proposed to contribute to slow
components (�300 ms) of visual-evoked responses over occipital
cortex. Both studies conjectured that the baseline shifts and asym-
metric oscillations were likely due to differences in outward and
inward neural currents producing the magnetic field, which they
posit are unlikely to be equal.

Our data and modeling results suggest that the net inward
and outward current flow, within pyramidal neurons across the
SI network, are approximately balanced, creating a symmetric
index near zero in our signal (Fig. 6). The discrepancy between
our results and those of Nikulin et al. (2007) and Mazaheri and
Jensen (2008) may arise from several areas. These studies
showed that differences in the later components of evoked
sensory responses (�250 ms) were tied to asymmetry in the
prestimulus alpha oscillation. In our study, we investigated
only the evoked response components �175 ms. Notably, in
our data there is a late trend (135–175 ms) to a larger MEG
SI-evoked response under high prestimulus mu that was not
reproduced by the model. We conjecture that this trend may
arise from stronger poststimulus approximately 135-ms FF
inputs to the network during high prestimulus mu conditions.
This timing (�100 ms after the first evoked FF input arrives to
the network) is consistent with the idea that there is also a
stronger poststimulus evoked 10-Hz oscillation that is perhaps
phase-locked (Hanslamayer et al. 2007; Makeig et al. 2002).
Investigation of evoked poststimulus oscillations is not a focus
of our study and we do not make any strong claims regarding
these phenomena here.

Further, we studied activity localized to a primary equivalent
current dipole in SI, whereas the other studies investigated sensor
data. Both approaches have strengths. A benefit of dipole local-
ization is that it provides a more concrete localization of a single
signal source. Mazaheri and Jensen (2008) described the presence
of a bipolar field pattern in their asymmetry index measure that
was indicative of the existence of a current dipole located between
the positive and negative signals. However, they did not investi-
gate the location of the proposed dipole in the brain or find a
consistent direction of the dipole current across subjects, from
which inward and outward could be defined.

Last, we calculated the symmetry index of our signal across
the entire frequency band of the SI mu rhythm complex (7–29
Hz), whereas the previous studies investigated asymmetries in
activity from signals that had been band-passed in the alpha or
beta range. Nikulin et al. (2007) used an independent compo-
nent analysis to filter sensor data in the range of 8–13 Hz and
investigated baseline shifts in the mean amplitude of the
filtered signal. Inspection of our signal over long time periods
(10 s) showed modulation of the mu rhythm without such a
dc-offset effect (see METHODS). Mazaheri and Jensen (2008)
band-passed their data using narrow width intervals from 5 to
40 Hz (e.g., 8–12 Hz for alpha activity) and found peaks and
troughs in the band-passed data. The time points of the peak
and trough values in the band-passed signal were used to
calculate the peak and trough values in the original signal from
which the symmetry index was calculated.

Our analysis methods for finding peaks and troughs in the
data are analogous to those of Mazaheri and Jensen (2008).
However, in Fig. 6 we quantified the symmetry index from
peaks and troughs calculated from a broader band filter of our
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signal that contained the entire mu range (5–30 Hz) (see
METHODS). In an additional analysis, we quantified the symme-
try index from calculated peaks and troughs in our signal by
first band-passing in narrow width bands (3-Hz widths) from 5
to 40 Hz, precisely as in Mazaheri and Jensen (2008). We
found the symmetry index to be significantly different from
zero at only 5–7 Hz in that analysis of the data (P � 0.03,
t-test; data not shown). However, closer inspection of the
calculation of peaks and troughs from the data filtered in this
small band showed that this is not the most accurate way to
calculate these values in our signal. This method produced
peaks and troughs that did not align with the true values in the
raw data. In contrast, a band-pass that contained the entire mu
range (5–30 Hz) produced precise alignment of peaks and
troughs in the band-passed and raw data, thus providing a more
accurate measure of symmetry in our signal. Supplemental Fig.
S1 shows examples of single-trial (1-s) raw-data waveforms
from the MEG and model SI signal, along with the band-
passed versions of these signals in a narrow low-frequency
band from 5 to 7 Hz (Supplemental Fig. S1, A and C) and in a
band containing the entire mu range, 5–30 Hz (Supplemental
Fig. S1, B and D).1 Calculated peaks and troughs are shown on
the band-passed and raw data with red and green asterisks,
respectively. In the case of calculating the peaks and troughs
from the 5- to 7-Hz filtered signals, the calculated peak and
trough values do not line up with those apparent in the raw data
and, in several instances, are flipped such that troughs are
higher than peaks (Supplemental Fig. S1, A and C). In contrast,
when calculating the peaks and troughs from the broader-band
5- to 30-Hz filtered signal, there is clear alignment between the
calculated values and those in the raw data (Supplemental Fig.
S1, B and D). The misalignment in peaks and troughs when
using only a narrow low-frequency band is likely due to the
fact that our SI dipole signal is a true two-component signal
that contains prominent alpha and beta activity and band-
passing the signal in a small frequency range distorts this fact.
The observed misalignment in peaks and troughs would be less
pronounced in signals that contained a predominantly 10-Hz
oscillation, as in Mazaheri and Jensen (2008).

Motor gating of sensorimotor mu rhythms and
somatosensory-evoked responses

Our study focuses on the sensorimotor mu rhythm and
tactile-evoked responses exhibited by a primary current dipole
localized to the hand representation of SI, without considering
motor activity. Nevertheless, there is synergy between our
results and the literature examining movement-induced de-
creases in sensorimotor mu rhythms and gating of somatosen-
sory-evoked responses. Movement desynchronizes sensorimo-
tor mu rhythms (Neuper et al. 2006; Pfurtscheller et al. 1997;
Salenius et al. 1997). Several studies have also shown that limb
and digit movements attenuate early components (�45 ms) of
electrically induced (typically median nerve) somatosensory-
evoked potentials (Cheron and Borenstein 1987; Cohen and
Starr 1987; Nishihira et al. 1997; Rossini et al. 1999; Rushton
et al. 1981; Tapia et al. 1987). Direct electrophysiological
recordings in animal models suggest that this attenuation is due
to decreases in neuronal spiking activity, most probably of

pyramidal neurons (Chapin and Woodward 1982; Ro et al.
2000). Rossini et al. (1999) used high-resolution EEG to
localize this effect in human somatosensory, motor, and sup-
plementary motor areas and found that in each area the gating
effect was strongest at peaks between 30- and 45-ms post-
nerve stimulation.

Our results show that decreased mu in SI predicts a de-
creased M50 peak, occurring with a maximum between 40-
and 60-ms post-tactile stimulation. Our model predicts that this
decrease is due to lower neuronal firing rates in SI pyramidal
neurons (Fig. 8). The decreases in mu in our study are spon-
taneous and not directly related to motor movement; the
attenuated peak occurs at a slightly longer latency than that in
the described studies, likely due to the slower propagation time
to the cortex from a brief tactile stimulation versus a strong
electric stimulation to the nerve. However, the parallels in the
two phenomena—decreased mu power predicting decreased
evoked responses—suggest that similar circuits and mecha-
nisms are common. In the following text we discuss how
prestimulus mu-related changes in evoked activity may also be
connected to facilitating detection of tactile-evoked responses.

Influence of the prestimulus mu rhythm on evoked response
gain and implications for detection

In the present study, we intentionally excluded analysis of
the impact of mu oscillations on detection. The focus of the
present study was on mu—its rhythmogenesis and its impact
on the evoked response—and the additional domain of relating
these findings to perceptual success requires its own extensive
treatment. Specifically, to determine the effects of mu power
on the SI-evoked response, independent of perceptual success,
trials were chosen to comprise a 50% detection rate for high
and low mu conditions. That said, our results show that the
changes in the evoked response driven by high or low mu
conditions are different from those we showed in a previous
study to predict detections. Our modeling results predicted that
the ongoing mu rhythm influenced early components of the
SI-evoked response (�70 ms), with a weaker effect on later
evoked activity �175 ms (Fig. 9A). This hypothesis was
confirmed in the MEG data when sorting trials over high and
low prestimulus mu power. Under high prestimulus mu con-
ditions, a significant early M50 positive peak emerged, fol-
lowed by a trend toward a weaker M70 response (Fig. 9B). In
our previous study (Jones et al. 2007), we found that the later
components of the SI-evoked response, beginning at about 70
ms (M70), were correlated with detection of a threshold-level
tactile stimulus, such that the response magnitude was greater
on detected trials. The model predicted that the late differences
with detection reflected poststimulus changes in higher-order
cortex or nonspecific thalamic projections that created earlier
and stronger evoked FB at �70 ms and LFF input at �135 ms
to SI on detected trials (see Jones et al. 2007). Several studies
have reported a nearly inverse relationship between mu power
and detection (Hanslmayr et al. 2007; Linkenkaer-Hansen et al.
2004; Schubert et al. 2008; Zhang and Ding 2009). In light of
these findings, we may conjecture a possible relationship be-
tween low prestimulus rhythms in SI and “higher-order areas” on
detected trials. Low-power ongoing rhythms in the higher-
order area, producing weak ongoing approximately 10-Hz FB
to SI, have greater early (�70 ms) poststimulus-evoked re-1 The online version of this article contains supplemental data.
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sponses that in turn create greater FB to SI at nearly 70 ms on
detected trials.

Conclusion

In summary, our study is the first to characterize the inter-
dependence of the mu-alpha and mu-beta components of the SI
MEG measured mu rhythm on single trials. Our computational
model provides a novel mechanistic interpretation of the mu
rhythm and its functional significance and presents the first
evidence that the SI mu rhythm may arise from a stochastic
nearly synchronous alternating sequence of approximately
10-Hz FF followed by FB input to the SI network. Importantly,
specific predictions of our computational model are in agree-
ment with the characteristics of the SI activity based on source
modeling of our MEG data.
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Corrigendum

Volume 102, December 2009

Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI. Quantitative
analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and
modulation of sensory-evoked responses. J Neurophysiol 102: 3554–3572, 2009. First published
October 7, 2009; doi:10.1152/jn.00535.2009; http://jn.physiology.org/content/102/6/3554.full.

In METHODS, in the section titled CALCULATION OF NET CURRENT DIPOLE, the word “perpendicular”
should be “parallel.” The correct sentence is as follows:

The SI ECD was calculated as the net sum across the population of the intracellular currents
flowing within the PN dendrites in a direction parallel to the longitudinal axis of the apical dendrite
multiplied by the corresponding length of the dendrite.
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doi:10.1152/jn.z9k-2674-corr.2014.

32510022-3077/14 Copyright © 2014 the American Physiological Societywww.jn.org

http://jn.physiology.org/content/102/6/3554.full

